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Emerging evidences have shown that one form of mental training—mindfulness
meditation, can improve attention, emotion regulation and cognitive performance
through changing brain activity and structural connectivity. However, whether and
how the short-term mindfulness meditation alters large-scale brain networks are not
well understood. Here, we applied a novel data-driven technique, the multivariate
pattern analysis (MVPA) to resting-state fMRI (rsfMRI) data to identify changes in brain
activity patterns and assess the neural mechanisms induced by a brief mindfulness
training—integrative body–mind training (IBMT), which was previously reported in our
series of randomized studies. Whole brain rsfMRI was performed on an undergraduate
group who received 2 weeks of IBMT with 30 min per session (5 h training in total).
Classifiers were trained on measures of functional connectivity in this fMRI data, and they
were able to reliably differentiate (with 72% accuracy) patterns of connectivity from before
vs. after the IBMT training. After training, an increase in positive functional connections
(60 connections) were detected, primarily involving bilateral superior/middle occipital
gyrus, bilateral frontale operculum, bilateral superior temporal gyrus, right superior
temporal pole, bilateral insula, caudate and cerebellum. These results suggest that brief
mental training alters the functional connectivity of large-scale brain networks at rest that
may involve a portion of the neural circuitry supporting attention, cognitive and affective
processing, awareness and sensory integration and reward processing.

Keywords: integrative body–mind training (IBMT), multivariate pattern analysis (MVPA), resting-state fMRI,
functional connectivity, large-scale brain networks

INTRODUCTION

Mindfulness meditation is one form of mental training methods including several key components,
such as body relaxation, breathing practice, mental imagery and mindfulness practice (Tang
et al., 2015a; Acevedo et al., 2016), and has been reported to reduce stress, improve attention,
emotion regulation and cognitive performance (Tang et al., 2007). The integrative body–mind
training (IBMT; or simply integrative meditation) is one form of mindfulness meditation
originated from ancient eastern contemplative traditions and includes techniques of body
relaxation, mental imagery and mindfulness guided by an IBMT coach. Cooperation between
the body and the mind is emphasized in facilitating and achieving a meditative state. The
trainees concentrated on achieving a balanced state of body and mind. The method stresses
no effort to control thoughts, but instead a state of restful alertness that allows a high
degree of awareness of body, mind, and external instructions (Tang et al., 2007, 2010, 2012).

Frontiers in Systems Neuroscience | www.frontiersin.org 1 February 2017 | Volume 11 | Article 6

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org/Systems_Neuroscience/editorialboard
http://www.frontiersin.org/Systems_Neuroscience/editorialboard
https://doi.org/10.3389/fnsys.2017.00006
http://crossmark.crossref.org/dialog/?doi=10.3389/fnsys.2017.00006&domain=pdf&date_stamp=2017-02-28
http://journal.frontiersin.org/article/10.3389/fnsys.2017.00006/abstract
http://journal.frontiersin.org/article/10.3389/fnsys.2017.00006/abstract
http://loop.frontiersin.org/people/3064/overview
http://loop.frontiersin.org/people/197083/overview
https://creativecommons.org/licenses/by/4.0/
mailto:yiyuan.tang@ttu.edu
https://doi.org/10.3389/fnsys.2017.00006
http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


Tang et al. Mindfulness Training Reorganizes Large-Scale Networks

Our previous randomized studies have shown that
short-term IBMT can improve attention, emotion regulation
and cognitive performance through changing brain
activity and white matter structural connectivity (Tang
et al., 2007, 2009, 2010, 2012, 2013, 2015a,b). However,
whether and how IBMT alters large-scale brain networks
remains unknown.

The resting-state fMRI (rsfMRI) measures spontaneous
neuronal activity of the brain and has been proven as an
effective method for measuring large-scale functional networks
in neuropsychology conditions. Therefore rsfMRImay be helpful
for exploring the network alterations induced by short-term
IBMT (Fox and Raichle, 2007; Tang et al., 2009, 2013).

Multivariate pattern analysis (MVPA) is a novel data-driven
technique (Haynes and Rees, 2006; Norman et al., 2006; Pereira
et al., 2009; Tong and Pratte, 2012; Lewis-Peacock and Norman,
2013, 2014) and has been paid increasing attention in rsfMRI
analysis (De Martino et al., 2008; Haxby, 2012). MVPA has
been applied in cognitive processing, brain aging, and mental
disorders such as depression, antisocial personality disorder,
attention-deficit disorder and schizophrenia (Dosenbach
et al., 2010; Shen et al., 2010; Lewis-Peacock et al., 2012;
Zeng et al., 2012). Studies suggested that MVPA could
potentially detect spatially distributed information to further
highlight the neural mechanisms underlying the behavioral
symptoms (Zeng et al., 2012). Furthermore, MVPA based
on whole-brain rsfMRI data can complement seed-based
analyses. The whole-brain functional connectivity, unlike
those analyzing several predefined regions or networks
of interest, can ensure the optimal use of the wealth of
information present in the brain imaging data (Zeng et al.,
2012).

Hence, by using MVPA, our study employed whole-brain
rsfMRI data to investigate the significant training-induced
brain pattern changes in an undergraduate group who received
2 weeks of IBMT with 30 min per session for 10 sessions (5 h
training in total). We hypothesize that the altered functional
connections will be observed in the large-scale whole-brain
resting-state networks including areas associated with attention,
cognitive and emotional processing, awareness and sensory
integration, and reward processing (Tang et al., 2007, 2009,
2010, 2012, 2013, 2015a,b; Acevedo et al., 2016). This exploration
will be helpful in further discovering the neural mechanisms
underlying the altered brain states, and may offer additional
information for advancing our understanding of meditation
training.

MATERIALS AND METHODS

Participants
Twenty-five (13 males, 21 ± 1.6 years old) healthy
undergraduates at Dalian University of Technology (DUT)
without any meditation experience were recruited and
completed 2 weeks of IBMT training with 30 min per session
for 10 sessions (5 h training in total). This study was carried out
in accordance with the recommendations of DUT Institutional
Review committee. All subjects gave written informed

consent in accordance with the Declaration of Helsinki.
The protocol was approved by the DUT Institutional Review
committee.

Data Acquisition
Imaging data collection was performedwith a Philips-Achieva 3T
scanner (Eindhoven, Netherlands) at Dalian Municipal Central
Hospital. During the experiments, the subjects were instructed to
relax, and lie still with eyes focused on a central white cross on a
black screen during the resting scan. Foam pads with a standard
birdcage head coil were used to fix the subject’s head (Tang et al.,
2013). Functional images were acquired using a gradient-echo
EPI sequence (TR = 2000 ms, TE = 30 ms, flip angle = 80◦).
Whole-brain volumes were acquired with 36 contiguous 4-mm-
thick transverse slices without gap. Functional resting-state
session lasted 6 min and 10 s, and 180 volumes were obtained.
For each subject, we collected the data before and after
training.

Preprocessing
All resting-state images were pre-processed using the
SPM8 package (Wellcome Trust Center for Neuroimaging,
University College London, London, UK1) and Data Processing
Assistant for Resting-State fMRI (DPARSF)2. For each subject,
the first five volumes of the scanned data were discarded due
to magnetic saturation. The remaining volumes were corrected
for within-scan acquisition time differences between slices,
and realigned to the first volume to correct for inter-scan
head motions. All subjects in this study had less than
1.5 mm translation in the x, y, or z-axes and less than 1.5◦

of rotation in each axis. Next, the volumes were normalized
to a standard echo planar imaging template in the Montreal
Neurological Institute (MNI) space. Then, smoothing and
filtering were performed using a Gaussian filter of 8 mm
full-width half-maximum kernel and a Chebyshev band-pass
filter (0.01–0.08 Hz) respectively. Considering several potential
sources of physiological noise in the functional connectivity
analysis, nuisance covariates including head motion parameters,
global mean signals, white matter signals and cerebrospinal fluid
signals were regressed out from the image (Dosenbach et al.,
2010).

The processed images were divided into 116 regions
according to the automated anatomical labeling (AAL) atlas
(Schmahmann et al., 1999). Regional mean time series were
obtained for each subject by averaging the fMRI time series
over all the voxels in each of the 116 regions (Shen et al.,
2010). Pearson’s correlation coefficients were used to evaluate
functional connectivity between each pair of regions and we
obtained a resting-state functional network that was expressed as
a 116× 116 symmetrical matrix for each subject. By removing the
116 diagonal elements, the 6670 upper triangular elements of the
functional connectivity matrix were normalized using Fisher’s
z-transform, and were then used as the features in the subsequent
MVPA.

1www.fil.ion.ucl.ac.uk/spm
2http://www.restfmri.net
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Features with High Discriminative Power
Reducing the number of features in a pattern classification
problem can diminish noise, reduce overfitting and accelerate
computation. In our analysis, feature selection reconstructs
the feature space for classification by retaining the most
discriminating functional connections and eliminating the rest.
The discriminative power of a feature can be quantitatively
measured by its relevance to classification (Guyon and
Elisseeff, 2003). Therefore, the highly discriminating functional
connections principally represented the alterative resting-state
functional connectivity patterns. We can use these connections,
rather than the full set of 6670 functional connections, to classify
different brain states in the rsfMRI data before vs. after IBMT
training.

In this study, we used the Kendall tau rank correlation
coefficient (Kendall and Gibbons, 1990; Shen et al., 2010;
Zeng et al., 2012), which provides a distribution-free test of
independence between two variables to measure the relevance of
each feature for classification. Suppose that there are n samples
in the subjects after 2 weeks of IBMT. Let xij denotes the
functional connectivity feature i of the jth sample and yj denotes
the class label of this sample (+1 for ‘‘post-training’’ and −1 for
‘‘pre-training’’). The Kendall tau correlation coefficient of the
functional connectivity feature i can be defined as:

τi =
nc − nd

n2
(1)

Where nc and nd are the number of concordant and discordant
pairs, respectively. Because we do not consider the relationship
of two samples, the total number of sample pairs is n2. For a pair
of observation datasets {xijyj} and {xikyk}, it is a concordant pair
when

sgn(xij − xik) = sgn(yj − yk) (2)

Correspondingly, it is a discordant pair when

sgn(xij − xik) = −sgn(yj − yk) (3)

Thus, a positive correlation coefficient τi represents the ith
functional connectivity feature that exhibits a significant increase
after IBMT training, while a negative correlation coefficient
τi represents the ith functional connectivity feature that
exhibits a significant decrease after training. We defined the
‘‘discriminative power’’ of a given feature as the absolute
value of its Kendall tau correlation coefficient. When the
absolute value of τi was larger, the discriminative power was
stronger. We ranked every τi according to its discriminative
power and then selected those features with scores above a
certain threshold as the final feature set for classification.
Because a leave-one-out cross-validation strategy was used to
test the generalizability of the classifier (Figure 1), the final
feature sets differed slightly across iterations of the classification
procedure. Cross-validation ensures that the classifier is trained
on tested on independent data, thus avoiding concerns
of double-dipping or circularity in the classification results
(Kriegeskorte et al., 2009). Next, we defined the ‘‘consensus
functional connectivity’’ as the functional connectivity features
that appeared (i.e., showed sufficiently strong discriminative

power) in every cross-validation iteration (Dosenbach et al.,
2010; Zeng et al., 2012). Finally, we calculated the ‘‘region
weight’’ of each feature by counting the number of times that
feature appeared in the consensus functional connections in
this study. Region weights represented the relative contribution
of each feature to the classifier’s discrimination of functional
connectivity patterns in the rsfMRI data before vs. after IBMT
training.

Support Vector Classification and
Permutation Tests
After obtaining the data set of features with high discriminative
power, we used support vector machines (SVM) with radial basis
kernel function to perform the classification. The kernel function
we used was:

k(xi, xj) = exp
(
−

∥∥xi − xj
∥∥2

2σ 2

)
(4)

Here, sigma equaled 2. Due to our limited number of samples,
we used a leave-one-out cross-validation strategy to estimate
the performance of our classifier. Classification performance
can be quantified using the generalization rate (GR), sensitivity
and specificity based on the results of cross-validation. Note
that the sensitivity represents the proportion of ‘‘post-training’’
samples correctly identified, while the specificity represents
the proportion of ‘‘pre-training’’ samples correctly identified.
The overall proportion of samples correctly predicted defines
the GR.

Permutation tests were conducted to assess the performance
of the classifier. In this study, the GRwas chosen as the statistic to
estimate the statistical significance of the classifier’s performance.
For each classification iteration, we randomly permuted 1000×
the class labels (‘‘pre-training’’ or ‘‘post-training’’) of the data
being used to train the classifier. Importantly, the entire
classification operation, including the feature selection and SVM,
was carried out on every set of randomized class labels. We
defined the GR as the performance of the classifier trained on
permuted class labels, and we defined GR0 as the performance
of the classifier trained on valid class labels. The p-values
reported for classifier performance represent the probability of
GR being no less than GR0. Therefore, when p< 0.05, this would
indicate that the classifier could reliably decode whether the
functional connectivity data was a pre-training or post-training
sample.

Reliability of the Algorithm
Recent attention has focused on the possibility for systematic bias
in fMRI scans resulting from in-scanner motion (Satterthwaite
et al., 2013). As the optimal procedures for removing motion
artifacts are still an ongoing area of research, and it is
unclear exactly how different methods impact downstream
analyses, we chose to test our main hypotheses on motion-
corrected (‘‘scrubbed’’) data. We implemented a scrubbing
procedure as part of fMRI preprocessing. An estimate of
motion at each time point was calculated as the frame-wise
displacement (FD), using the three translational and three
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FIGURE 1 | Flow chart of the multivariate pattern analysis (MVPA) algorithm.

rotational displacements from rigid body motion correction
procedure. Rotational displacements were converted from
degrees to millimeters by calculating displacement on the
surface of a sphere of radius 50 mm. Any frame i with

FDi > 0.5 mm was linearly interpolated. We found there
was no material difference in the results obtained from
scrubbed vs. unscrubbed data, confirming the reliability of our
algorithm.
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RESULTS

Classification Results
To estimate the effect of the selected parameters on the
performance of the classifier, the cross-validation calculation
was explored using different parameters. We repeated this
calculation with a varying number of different features (from
40 to 300) in the feature selection and found that the
classifier’s best performance was achieved at 160 features
(Figure 2) Therefore, we selected 160 as the optimal size
of the final feature space for the classification analysis
(i.e., the threshold was set at 160). We used this threshold
value because many studies have used the same method
for establishing the threshold (Corbetta and Shulman, 2002;
Dosenbach et al., 2010; Shen et al., 2010; Zeng et al., 2012).
In addition, this procedure was also used to choose the
optimal value for the parameter C for the SVM algorithm.
We repeated this calculation with a range of different values
(dimension: 2–20 and C: 0.005:0.05:2). Then, we identified
the values when the classifier achieved the maximum GR.
We identified the optimal C as 0.01, which is consistent
with previous studies (Besga et al., 2012; Zeng et al., 2012).
When using 160 features in the feature selection (Figure 2A)
and C = 0.01 for the SVM, the classifier achieved maximum
performance (GR: 72%; sensitivity: 76%; specificity: 68%;

FIGURE 2 | (A) The curve of the generalization rate (GR) to the number of
features. The horizontal axis represents the number of selected features and
the vertical axis represents the GR. (B) The discriminative scores of all
subjects. The first 25 samples represented subjects before training (blue bar).
The remaining samples represented corresponding subjects after training (red
bar).

Figure 2B). Permutation tests revealed that the classifier
successfully learned the relationship between the resting-state
functional connectivity data and the pre-training/post-training
class labels (p< 0.0001).

Altered Resting-State Functional
Connections after Training
Although 160 features were selected during a leave-one-out
cross-validation iteration, the functional connectivity feature
set selected in each iteration was slightly different (Dosenbach
et al., 2010). In this investigation, 105 consensus functional
connections were identified across the 50 (25 + 25 = 50)
iterations of the cross-validation procedure (Dosenbach et al.,
2010; Zeng et al., 2012). According to the Kendall tau rank
correlation coefficient above, a positive correlation coefficient
τi represents the ith functional connectivity feature that
exhibits a significant increase after IBMT training, while a
negative correlation coefficient τi represents the ith functional
connectivity feature that exhibits a significant decrease after
training. Comparing the consensus functional connectivity
in subjects post-training vs. pre-training, we found more
positive functional connections (60 connections) than negative
connections (45 connections). This result indicates there are
more increased functional connections after IBMT training.
When analyzing the brain regions underlying this increase
in functional connectivity, we found that occipital cortex
(primarily including the superior and middle occipital gyrus)
was functionally connected to many regions (Figure 3).
Obviously, a large number of increased connections were
encompassed between the occipital and temporal cortex (mainly
comprising the superior temporal gyrus and its pole, and
the insula), and between the occipital and the frontal cortex
(mainly comprising frontal operculum). In addition, increased
consensus functional connections between cerebellum and
caudate were also detected (all P < 0.05). But we did not
find significant lateralization differences among these bilateral
areas.

DISCUSSIONS

Short-term mindfulness training induces a brain state that
requires communication between multiple brain regions
that collectively mediate the encoding and maintenance of
sensory information (Tang et al., 2007, 2009, 2010, 2012,
2013, 2015a,b; Tang and Posner, 2014; Acevedo et al.,
2016). Our results showed that 2 weeks of IBMT (5 h in
total) reorganized the functional connectivity of large-scale
brain networks involved in attention, cognitive and affective
processing, awareness and sensory integration, and reward
processing (e.g., the bilateral superior occipital/middle gyrus,
bilateral frontal operculum, bilateral superior temporal gyrus,
right superior temporal pole, bilateral insula, caudate and
cerebellum.

Visual inputs contribute to over 90% of the total information
(from all sensors) entering the brain. In literature, increased
activity and connectivity in visual cortex are reported following
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FIGURE 3 | Sixty consensus increased functional connections. Regions are color-coded by category. The line colors represent the relative consensus
functional connections. (A) Region weights and the distribution of consensus increased functional connections in a circle graph. (B) Consensus increased functional
connections demonstrated in left sagittal, and top axial view. The colors represent structural categories of brain regions and the size of circles represent region
weights.

short- and long-term mindfulness meditation (Tang et al., 2009,
2015a; Kilpatrick et al., 2011; Xu et al., 2014; Berkovich-Ohana
et al., 2016). However, the underlying mechanism of visual
cortex involvement during mindfulness remains unclear. One
possibility might be that whenmeditators close eyes and focus on
the inside world, the sensory processes are amplified. When they
continuously observe the inner thoughts entwined with mental
images, the mental processes of visual areas are heavily involved
in. Another possibility might be the relaxation effect following
meditation because the activity and functional connectivity of
the visual cortex is also increased during light sleep, sedation and
alcohol consumption (Kiviniemi et al., 2005; Horovitz et al., 2008;
Esposito et al., 2010).

IBMT includes components of body relaxation, mental
imagery and mindfulness (maintaining a high degree of
awareness of body, mind and external instructions guided by an
IBMT coach). One of our studies also detected greater activity in
visual cortex following only five sessions of IBMT (Tang et al.,
2009). It makes sense that the component of body relaxation

and mental imagery could induce greater activity in visual
areas, consistent with previous reports (Tang et al., 2009, 2015a;
Kilpatrick et al., 2011; Xu et al., 2014; Berkovich-Ohana et al.,
2016). However, mindfulness is different from sleep or sedation
state with low level of arousal, and it requires to maintain
high level of vigilance state for meditators. This is in line with
our results that a large number of increased connections were
encompassed between the occipital and temporal cortex (mainly
comprising the superior temporal gyrus and its pole), and
between the occipital and the frontal cortex (mainly comprising
frontal operculum and insula).

Recent studies indicated that meditation modified subsystems
of attention (Jha et al., 2007; Tang et al., 2007). It is worth
mentioning that the frontal cortex participates both dorsal
and ventral attention network (Petersen and Posner, 2012;
Schmidt et al., 2013; Tang et al., 2015a). This network is
believed to modulate externally directed attention by amplifying
or attenuating the saliency of relevant and irrelevant cues
(Corbetta and Shulman, 2002). It has been shown in the
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monkey that the combined actions of frontal eye fields
and the occipital gyrus improved cross-area communication
with attention (Gregoriou et al., 2009), and enhanced visual
short-term memory performance (Liebe et al., 2012). In
previous studies, we found that IBMT improves executive
and altering attention networks compared to a well-controlled
relaxation training (Tang et al., 2007, 2012, 2015a). Hence, we
speculate that the long-range coupling between the occipital
gyrus and frontal gyrus may improve and optimize global
information processing helpful for the maintenance of a
meditative state (Tang et al., 2007, 2015a; Tang and Posner,
2014).

Furthermore, we also found increased functional connectivity
in adjacent occipital-temporal regions. These regions are often
implicated in associative and item-recognition memory, a
semantic network for both words and pictures, and self-cognition
and awareness (Menon and Uddin, 2010). It might be possible
that meditation training increases connections of temporal
and occipital regions to allocate cognitive resources in order
to improve performance. This idea is consistent with prior
results showing that meditation improves attention and working
memory performance (Tang et al., 2012, 2015a; Tang and
Posner, 2014). The increased functional connectivity within
temporal cortex is often associated with mood regulation and
affective processing. Superior temporal sulcus was active in
loving-kindness-compassion meditation (Lutz et al., 2008) and
light modulation (Vandewalle et al., 2010). Insula was involved
in interoceptive awareness, emotional responses and high-level
attentional processes (Landtblom et al., 2011), consistent with
our previous report that IBMT improves insula activity (Tang
et al., 2009, 2015a). Importantly, using the Profile of Mood State
and Attention Network Test, we found that IBMT improves
attention and emotion regulation (Tang et al., 2007). The
present results may indicate that IBMT improves emotion
regulation through increased functional connectivity within
temporal cortex.

In addition, increased consensus functional connections
between cerebellum and caudate were also detected. Previous

studies showed that the caudate nucleus plays a vital role in
reward and learning, and the cerebellum may contribute to
emotion and cognitive processing (Tang et al., 2009; Bostan et al.,
2010; Ding et al., 2015, 2014). A recent study also showed that
the basal ganglia and cerebellum may be linked together to form
an integrated functional network that influences cognitive and
affective processing (Bostan et al., 2010), and may support the
brain state associated with meditation.

Taken together, our study indicates that MVPA of functional
connectivity patterns in rsfMRI data effectively discriminates
the different brain states in individuals before vs. after
short-termmeditation training.We found significantly increased
functional connectivity between occipital, temporal and frontal
regions, which may suggest that meditation training mainly
improves attention, emotional, cognitive and reward processing.
Our results provide new insights into the underlying neural
mechanisms of mental training such as mindfulness, identifying
complex changes in resting-state functional integration across
the brain as a result of brief mindfulness training. It
should be noted that we are aware of the potential issue
of reverse inference when interpreting results (Poldrack,
2006). This is a legitimate first step in attempting to
understand the significance of the observed changes in functional
connectivity patterns following mindfulness training, and these
results can be strengthened by future work focused on the
functional selectivity and specificity of these changes in neural
connectivity.
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